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Abstract. We analyse various properties of the visibility diagrams that can be used in the context
of modular symmetries and confront them with some recent experimental developments in the
quantum Hall effect. We show that a suitable physical interpretation of the visibility diagrams,
which permits one to describe successfully the observed architecture of the quantum Hall states,
gives rise naturally to a stripe structure reproducing some of the experimental features that have
been observed in the study of the quantum fluctuations of Hall conductance. Furthermore, we
show new properties of the visibility diagrams stemming from the structure of subgroups of the
full modular group.

1. Introduction

The quantum Hall effect (QHE) is a remarkable phenomenon occurring in a two-dimensional
electron gas in a strong magnetic field at low temperature [1]. Since the discovery of the
quantized integer [2] and fractional [3] Hall conductivity, the QHE has been an intensive area
of theoretical and experimental investigation. The pioneering theoretical contributions [4]
analysing the basic features of the hierarchy of the Hall plateaux have triggered numerous works
aiming to provide a better understanding of the underlying properties governing the complicated
phase diagram associated with the quantum Hall regime, together with the precise nature of
the various observed transitions between plateaux and/or focusing on the characterization of a
suitable theory.

It has been realized for some time that modular symmetries may well be of interest
to understand more deeply some salient features of the QHE. For instance, it has been
suggested [5–7] that some properties of the phase diagram may be explained in terms of modular
group transformations. At the present time, a fully satisfactory microscopic or effective theory
for the QHE, from which the relevant modular symmetry (if any) would arise, is still lacking.
This has motivated further studies aimed at the derivation of general constraints on the phase
diagram coming from the full modular group or some of its subgroups [6, 7].

Some time ago, we showed that a special subgroup of the full modular group, namely the
group �(2), can be used to derive a model for a classification of integer, as well as fractional,
Hall states [9, 10]. We further showed that the constraints stemming from �(2) on physically
admissibleβ functions [11] give rise to a global phase diagram as well as crossover in the various
observed transitions, which are in good agreement with the present experimental observations.
Here, it is worth recalling that the classification based on the �(2) symmetry [9, 10], which
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refines the Jain and Haldane ones, reproduces successfully the observed hierarchical structures
of the Hall states. This construction can be somehow viewed as a modification of the law of
the corresponding states proposed in [12], whose underlying symmetry group is larger than
�(2). This difference will be commented upon in the next section. The construction based on
�(2) involves two important building blocks (in addition to the action of the group �(2) itself)
called the visibility diagrams. Basically, these diagrams, inherited from theoretical studies
in arithmetic and rigidly linked to the structure of �(2), have been shown to encode a great
amount of information on the experimentally observed global organization of the quantum
Hall states.

Recently, some new experiments on mesoscopic conductance in the quantum Hall regime
in silicon MOSFETs have been performed [13]. The essential experimental result is that the
extrema of the conductance fluctuations in the quantum Hall regime spread on linear trajectories
in the gate voltage Vg–magnetic field B plane, parallel to lines of constant filling factor ν = p

(with p = 0, 1, 2, . . .). In [13], the following relation:

C

e

∂Vg

∂B
= n

e

h
n integer (1.1)

in which C
e

= ∂ρ

∂Vg
is assumed to hold (ρ denotes the electron density and the constant

C
e

= 8.6 × 1011 cm−2 V−1 in [13]) has been found to be verified to within a few percent
accuracy. Furthermore, a stripe structure in the Vg–B plane has been clearly observed in this
experiment.

For the sake of clarity, we now summarize the principal result of this paper: the main
(mathematical) features of one type of visibility diagram (hereafter called the odd visibility
diagram) admit naturally a consistent physical interpretation, based principally on the very
definition of the filling factor ν (recall that ν = Nc

N�
, where Nc and N� = BS h

e2 (S is the device
area) denote, respectively, the number of charge carriers and number of unit flux), combined
with a physical interpretation of the generators of �(2). This interpretation permits one to map
the odd visibility diagram to the Vg–B plane so that:

(i) The stripe structure appearing in the odd diagram (in which each stripe is, by construction,
rigidly linked to a Hall plateau) reproduces nicely the experimentally observed stripe
structure reported in [13].

(ii) A consistent interpretation of (1.1) can be obtained within the proposed framework, thanks
in particular to the fact that the lines passing through the origin of the odd visibility diagram
are lines of constant filling factor.

This paper is organized as follows. In section 2.1, we collect useful properties of the group
�(2) and recall briefly the construction of the even visibility diagram, which basically permits
one to visualize the architecture of the quantum Hall states obtained from �(2) which fits well
with the present experimental situation [10]. In section 2.2, we describe the construction of
the odd visibility diagram which is a central element in this paper. Section 2.3 is devoted to
the physical interpretation of the odd visibility diagram which makes it possible to map this
to the Vg–B plane and to reproduce most of the experimental features obtained in [13]. Some
new properties of the visibility diagrams stemming from the structure of subgroups of the
modular group have been collected separately and are presented for the sake of completeness
in section 3. Finally, we summarize the results and draw conclusions.
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2. Visibility diagrams and stripe structures

2.1. Group �(2), classification of Hall states and even visibility diagram

The possible importance of the role played by modular symmetries in the QHE has been
considered for some time. Some of the related work has emphasized that (most of) the (up
to now) experimentally observed features of QHE seem to be recovered from the action of
a suitable subgroup of the modular group on the complex conductivity plane. This latter is
denoted hereafter by P̄ ≡ P ∪ Q where P is the (open) upper half complex plane and Q is
the set of rational numbers. The complex coordinate on P̄ is defined by z = (σxy + iσxx)†, the
complex conductivity, where σxy (resp. σxx) denotes the Hall (resp. longitudinal) conductivity.

Let us now recall the essential features of�(2) that will be needed in the following analysis.
The group �(2) is the set of transformations G acting on P̄ which can be written as

G(z) = (2s + 1)z + 2n

2rz + (2k + 1)
k, n, r, s ∈ Z (2.1)

where

(2s + 1)(2k + 1) − 4rn = 1 (2.2)

is the unimodularity condition. The two generators of �(2) are defined by

T 2(z) = z + 2 (2.3a)

�(z) = z

2z + 1
. (2.3b)

Before proceeding further, one comment is in order. The group �(2) is a subgroup of the
symmetry group underlying the law of the corresponding states proposed in [12]. This latter
group is known in the mathematical literature as �0(2) and is generated by �(z) (2.3b), the
flux attachment operator, and T (z) = z + 1, the Landau level addition operator. The physical
assumption behind the Landau level addition symmetry is that the physics at any (partially
filled) Landau level is independent of the number of completely filled lower Landau levels.
Basically, this assumption, as pointed out and discussed in [8], seems to be reasonable for well
separated Landau levels but may well become questionable whenever the Landau levels are
organized into well separated pairs and lie close to each other within each pair, for instance
due to spin splitting effects [8]. Then, the physics of the upper level of a given pair may well be
influenced by the electrons located in the lower level of the pair, while it seems still plausible
to assume that the physics of any pair is independent of how many pairs below are filled. Then,
a possible way to take this into account is to replace the Landau level addition operator T (z)
by T 2(z) given in (2.3a). The physical differences between �(2) and �0(2) for their possible
relevance to the QHE have been explored and discussed in [6–11] and the motivations for
choosing �(2) instead of any other possible subgroup of the modular group has already been
presented in [11]. From these previous analyses, it appears that �(2) is an appealing candidate
for a possible symmetry group relevant to the QHE.

Now the construction of a model for the classification of the quantum Hall states based
on �(2) can be obtained, as already explained in [10], by restricting �(2) to act only on
the real part of the complex conductivity z, which is identified with the filling factor ν

(parametrized as ν = p/q). Then, as we have shown in [9], for a given (fixed) even
denominator metallic state λ = 2s+1

2r , the hierarchy of the (liquid) odd denominator states
surrounding this metallic state is obtained from the images Gλ

n,k(0) and Gλ
n,k(1) of 0 and 1 by

the family of transformations Gλ
n,k ∈ �(2), where λ = 2s+1

2r holds and n, k are constrained by
the unimodularity condition (2.2).

† Here we have set e2 = h = 1; these quantities will be reinstated when necessary in the course of the analysis.
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Figure 1. Even visibility diagram. The stripe indexed by 1/2 can be used to reproduce the Jain
hierarchy. Open dots represent fractions p/q with q even, full dots represent fractions with q odd.

The action of�(2) on the filling factor ν = p/q can be visualized with the help of graphical
representations called visibility diagrams, whose construction is now summarized (for a
detailed construction see [10]). Consider a two-dimensional square lattice whose vertices are
indexed by a couple of positive (or zero) relatively prime integers (q, p). Since �(2) preserves
the parity of the denominator of any rational fraction, there are actually two ways to organize
the vertices pertaining to this lattice, depending on whether the denominator is even or odd.

Consider first the case where it is even and choose therefore a given λ = 2s+1
2r as a

starting vertex. Then, it is not difficult to realize that Gλ
n,k(0) and Gλ

n,k(1), which, in the
present framework, label the Hall plateaux surrounding the even denominator (metallic) Hall
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Figure 2. Selected stripes indexed by 2s+1
2 , s integer. Open dots represent fractions p/q with

q even, full dots represent fractions with q odd. A comparison with figure 3 of [16] suggests to
identify the vertical (half) stripe indexed by q = 0 and p = 1 with the insulator.

state corresponding to λ, are all located on two parallel straight lines forming an unbounded
left-ended stripe surrounding the vertex λ. Finally, the application of a similar process to all
even denominator fractions gives rise to a collection of non-overlapping stripes as depicted
in figure 1, each stripe corresponding therefore to a vertex with even denominator. This
visibility diagram, hereafter called the even diagram, involves naturally the Jain hierarchy,
which corresponds to the stripe associated with λ = 1/2 as can be easily realized by computing
the successive values for G1/2

n,k (0) and G
1/2
n,k (1) using (2.1) and (2.2). It is worth recalling some

experimental results performed in [14–16] on metal–insulator transitions. It appears that the
corresponding phase diagrams (see, e.g. figure 2 of [14] and figure 2 of [15]; see also a
recent result reported in [16]) exhibit a stripe structure which bears some similarity with the
stripe structure occurring in the even diagram when, anticipating what will be done soon,
the (q, p) plane is identified with the magnetic field-charge carrier density plane†. This can
be easily illustrated by selecting from figure 1 the relevant stripes which correspond here to
λ = (2s + 1)/2, as shown in figure 2, to be compared with figure 3 of [16]. We mention, by the
way, that a numerical determination of the phase diagram for the integer QHE (charge carrier
density (∼Vg) versus magnetic field) has been performed recently in [17]. The corresponding
results seem to be (qualitatively) consistent with the experimental results obtained in [16].

† At least for not too small a charge carrier density.
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Figure 3. Odd visibility diagram. Open dots represent fractionsp/q with q even, full dots represent
fractions wtih q odd. In [10], a numerical simulation based on information encoded in this diagram
was performed for the pxy versus B plot.

Notice that, provided the above interpretation of the (q, p) plane is actually correct, the vertical
leftmost half stripe (indexed by ‘1/0’) that is involved in the even diagram might be associated
with the insulator.

2.2. The odd visibility diagram

The second diagram that can be constructed, hereafter called the odd diagram, can be readily
obtained by using a well known theorem in arithmetic which states that, for any relatively
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Figure 4. Greyscale plot of conductance with a smooth background substracted (lighter = smaller
G, where G is the Hall conductance) taken from [13]. p denotes the filling factor. On (b), we have
added oblique dark lines to indicate clearly the two stripes; their corresponding horizontal width
are indicated by horizontal dark lines. It can be easily verified that both horizontal widths are equal.

prime integers q and p, there exist (necessarily) prime integers a and b such that

qb − pa = ±1. (2.4)

Then, for any (q, p) vertex of the lattice with q odd, associate the set of points (a, b) satisfying
this relation. It is easy to realize that these points are located on two parallel straight lines
forming a stripe surrounding the (q, p) vertex as depicted in figure 3. We then obtain stripes
for any odd denominator fraction p/q. Notice that the stripes can overlap, contrary to what
happens for the even diagram†.

At this point, one remark is in order. In the odd diagram, the two parallel straight lines
forming a stripe surrounding a given vertex (q0, p0) (together with the middle line passing
through the origin) have a slope equal to p0/q0. This slope is, by construction, equal to the
value of the filling factor ν.

2.3. Mapping the odd diagram to the Vg–B plane

We are now in a position to show that this latter diagram encodes interesting information
concerning recent experimental work that has been reported in [13]. The corresponding result
concerning the mesoscopic conductance in the quantum Hall regime in a silicon MOSFET
is that the extrema for the conductance fluctuations spread on linear trajectories in the Vg–B
plane parallel to constant (integer) filling factor. Recall that the quantum Hall fluctuations

† It is not difficult to see that the Haldane hierarchy is involved in the odd visibility diagram.
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considered here are observed in the transition regions and are different from the two other
types of fluctuations occurring at low B and low enough Vg, as mentioned in [13]. In [13], the
relation (1.1) has been found to be verified to within a few percent accuracy. Furthermore, a
stripe structure in the Vg–B plane has been observed, as shown in figure 4 (taken from figure 2
of [13]). Notice that our theoretical analysis strictly refers to the conductivity while the above
experiment gives access to the conductance which is related to the former quantity by an overall
geometrical factor, as is well known. But the properties of the stripe structures we consider
in this paper do not refer to the actual value of the conductivity (or the conductance) so that
figure 4 can be directly compared with our theoretical analysis. Now, observe that in the
experiment [13] the gate voltage Vg varies linearly with the number of charge carriers Nc in
the sample; furthermore, it is obvious that B varies linearly with the number of unit flux N�.

In order to confront some of these experimental results with the present �(2) framework,
we have to exhibit a possible relation between the visibility diagram, the gate voltage and the
applied magnetic field. This proceeds as follows. On the one hand, it is well known that the
physical definition of the filling factor is given by

ν = Nc

N�

. (2.5)

On the other hand, in the odd diagram, the filling factor is equal to the slope p/q of (the lines
forming) the stripe surrounding the vertex (q, p), as already indicated in section 2.2. Bringing
this together, this suggests identifying the (q, p) plane with the (N�,Nc) plane, the latter being
naturally related to the B–Vg plane. This gives rise to a mapping of the odd diagram to the
B–Vg plane defined by†

q 
→ B p 
→ Vg. (2.6)

The physical relevance of this mapping is supported by the following facts. First, observe that
the action of the operator T 2 (2.3a) on any vertex (q, p) of the visibility diagram gives rise to
a vertical shift

T 2 : (q, p) → (q, p + 2q). (2.7)

In the physical literature, T 2 has been identified with a Landau shift type operator, acting on
the filling factor as ν → ν + 2, which corresponds to an increase of the number of charge
carriers. Next, observe that the action of the operator � (2.3b) on any vertex (q, p) is given
by

� : (q, p) → (q + 2p, p). (2.8)

Physically, this operator is interpreted as the flux attachment operator, which then corresponds
to an increase of the applied magnetic field B. This shows that the q and p axes on the odd
diagram refer, respectively, to the B and Nc (or Vg) axes.

From the above defined mapping, it is now possible to perform a comparison between
the stripe structure occurring in the Vg–B plane observed in [13] and the one stemming from
the odd diagram. These structures are depicted respectively in figures 4 and 5. In figure 4,
the stripe structure is indicated by grey areas (those indexed by filling factors p = 1, 2, 3, 4)
which correspond clearly to Hall plateaux as can be easily seen on the upper onset of figure 4
where the conductance versus Vg is depicted. For the sake of clarity, we have delimited the
stripes for p = 2, 3 by dark oblique lines in figure 4(b). Notice that, for the moment, we do
not consider the fluctuations of the conductance, focusing only on the Hall plateaux. In order
to make the comparison easier, we have only represented in figure 5 the stripes corresponding
to integer filling factors ν = 1, 2, 3, 4. We observe good qualitative agreement between both

† Up to dimension full factors.
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Figure 5. Selected stripes from the odd diagram corresponding to their experimental counterpart
depicted in figure 4. Open dots represent fractions p/q with q even, full dots represent fractions
with q odd. Notice that the horizontal (resp. vertical) axis is associated with B (resp. Vg) so that a
direct comparison with figure 4 can be done after the axes have been permuted. Dark vertical lines
indicate that the vertical widths for the stripes are equal.

structures. Each grey area in figure 4 corresponding to a given (integer) plateau appears to be
bounded by two parallel straight lines (at least in the considered range for Vg and B). Taking
into account the method for constructing the odd diagram, it is natural to identify each grey
area associated with a given integer filling factor with the corresponding stripe in figure 5.
Now, the experimentally verified equation (1.1) tells us that the slope of the two parallel lines
delimiting each stripe in figure 4 depends only on the filling factor ν = n (integer) up to a
dimension full factor while in figure 5 the slope for each corresponding stripe is exactly equal
to the filling factor, as already mentioned. This dimension full factor could, of course, be
related to those dimension full) factors necessarily appearing in the mapping (2.7).

Taking into account the above analysis, we now propose a physical interpretation of the
stripes of the odd diagram: the (q, p) plane of the odd diagram is identified with the B–Vg

plane of the experiment, any point inside a given stripe of the odd diagram being related to
a Hall state whose Hall conductivity is equal to the slope of this stripe. Obviously, any real
experiment can only reach a finite range of values for B and Vg so that only a finite number of
stripes must be taken into account in the odd diagram for that experiment (very much as we
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did in figure 5 in the case of the experiment performed in [13]). Within the present physical
picture, even when the number of involved stripes is finite, it may happen that two stripes
overlap partially. In this case, the above analysis does not apply for the overlapping areas. At
the present time, we do not have a clear interpretation of the status of the points belonging to
the overlapping areas.

It is possible to obtain from the odd diagram further information on the Hall conductance
as a function of Vg (uppermost onset of figure 4) by adapting to the present situation, for which
B is fixed while Vg (Nc) varies, the argument that we used in [10] to obtain a resistivity plot
(Hall resistivity versus B), agreeing well with the experimental plot. This is straighforwardly
achieved by simply assuming that the vertical width of any stripe in figure 5, defined by the
intercept of any vertical line with that stripe, is proportional to the width of the corresponding
plateau. The subsequent analysis is then very similar to the one that we described in [10]. We
have found that the resulting conductivity–Vg plot agrees qualitatively with the one depicted
in figure 4.

At this point, the analysis suggests that the proposed physical interpretation of the odd
diagram is consistent with the experimental observations corresponding to the integer QHE.
Proving that this diagram encodes some relevant properties of both integer and fractional
QHE (giving therefore some global information on the phase diagrams) would require further
comparison with experiments exploring the fractional quantum Hall regime (and/or for higher
magnetic fields). In this regime, it is obvious from the very construction of the odd diagram that
one (experimentally testable) prediction of the present scheme is the occurrence of branching
tree-like structures [10] among the stripes in the Vg–B plane, similar to the one appearing in
figure 3. We notice furthermore that the physical interpretation of the odd diagram is consistent
with the Streda formula [18] given by

σHall = K
∂ρ

∂B
(2.9)

where K is some constant, which has been proved under various hypotheses (see, e.g. [19]
and references therein) and reduces to (1.1) when ∂ρ

∂Vg
= C/e. This can be very easily

realized by observing that, within each stripe (which is associated with a plateau indexed
by p/q = σHall · (constant)), one has automatically p/q = σHall · (constant) = ∂Vg

∂B
which

reproduces (2.10) when ∂ρ

∂Vg
= C/e.

Let us now consider the quantum Hall fluctuations. Recall that these fluctuations are ob-
served in the transition regions between plateaux which narrow as the temperature decreases
while the fluctuations grow and sharpen. Fluctuations in the conductance have been studied for
some time (see [21] and references therein), in particular those occurring in two-dimensional
systems in high magnetic fields where the QHE dominates, but it appears in this latter case that
relatively little is firmly known (compared with the low magnetic field case). As pointed out in,
e.g. [21], neither of the two existing (microscopic) pictures used to explain the occurrence of
fluctuations at high magnetic field is really applicable for experiments performed with Si MOS-
FET devices. Furthermore, one of the main conclusions of [13] pointed out that the experimen-
tal verification of (1.1) contradicts the predictions of non-interacting (single-particle) models
and gave convincing arguments supporting the strong influence of charging effects in the be-
haviour of the quantum Hall fluctuations. Obviously, further experimental as well as theoretical
studies are needed in order to build a (microscopic) model providing a realistic description of
the observed quantum Hall fluctuations of the conductance. Such a construction is beyond the
scope of this paper. Nevertheless, the fact that the physical interpretation of the odd visibility
diagram presented in this paper is consistent with the experiments performed in [13] suggests
that modular symmetries (or at least the present framework based on modular symmetries) may
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well be an important ingredient for constructing and/or constraining a realistic model for the
quantum Hall fluctuations of conductance. Such a model might possibly explain why the fluctu-
ations of the conductance follow the pattern of the odd visibility diagram. Keeping in mind the
above analysis, it seems plausible to conjecture that, for a given transition ν = n1 → ν = n2,
n1,2 ∈ N , which may be extended to n1,2 ∈ Q if the present scheme applies to the fractional
QHE, the directions of the two coexisting families of straight lines involving the extrema of
the fluctuations (which are observed in [13] for the transitions 0 → 1, 1 → 2, 2 → 3, 3 → 4)
are given by the directions defined by the corresponding stripes involved in that transition.

The relevance of the visibility diagrams in the description of the QHE motivates a deeper
investigation of the mathematical properties underlying their structure. This is what we
consider now.

3. More on visibility diagrams and discussion

First, we point out that the odd diagram is, in fact, the superposition of two ‘more elementary’
visibility diagrams. To see that, consider separately the odd and even numerator filling factors
(with odd denominator) and apply the method for constructing the odd visibility diagram that
has been described in section 2. Doing this, one obtains the two new diagrams represented in
figures 6 and 7 corresponding, respectively, to odd and even numerator filling factors (hereafter
called, respectively, the odd/odd and even/odd diagrams). Then, it can be easily realized that
the superposition of these two latter diagrams gives rise to the odd visibility diagram. Note that
the stripes appearing in these two diagrams do not overlap as is the case for the even diagram.
Furthermore, observe that this latter diagram is related to the even/odd diagram through a
symmetry around the p = q axis which corresponds to the action of an operation belonging
to the full modular group �(1) but not to �(2).

Let us study more closely the action of modular transformations pertaining to �(1) on the
even, even/odd and odd/odd diagrams. Some remarks are in order. On the one hand, it can
be easily seen that the action of any G ∈ �(1) preserves the arithmetic relation (2.4) ruling
the whole construction of these diagrams. As a consequence, the action of �(1) maps the
stripe structure of each of the diagrams into another one or possibly a substructure. On the
other hand, any G ∈ �(2) maps each of these three diagrams into itself simply because �(2)
preserves the even or odd character of both numerator and denominator involved in the filling
factor. In other words, the whole structure of each diagram remains invariant under �(2). In
fact, it appears that �(2) is the largest subgroup of �(1) leaving invariant each of the three
diagrams. To see that, consider the action of the coset group �(1)/�(2) on these diagrams. It
is known in the mathematical literature [20] that this coset group involves six elements whose
corresponding representatives in �(1) can be chosen as

I =
(

1 0
0 1

)
(3.1a)

U =
(

1 1
0 1

)
(3.1b)

V =
(

0 −1
1 0

)
(3.1c)

W =
(

1 0
1 1

)
(3.1d)

P =
(

0 −1
1 1

)
(3.1e)
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Figure 6. Odd/odd elementary diagram corresponding to filling factors with odd numerator and
denominator. Open dots represent fractions p/q with q even, full dots represent fractions with q

odd and p odd, and full squares represent fractions with q odd and p even.

P 2 =
( −1 −1

1 0

)
(3.1f)

from which it can be verified that any of the six coset group elements maps a visibility diagram
into a subdiagram included in another diagram. Finally, using (3.1) together with the definition
of �(2), it is easy to prove that the even and odd diagrams (depicted respectively in figures 1
and 3) are invariant under the action of another subgroup of �(1) generated by U given
by (3.1b) and �(2). This subgroup is nothing but �0(2), which has been proposed [7] (see also
the second of [6]) as another candidate for a discrete symmetry group underlying the physics
of the QHE.
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Figure 7. Even/odd elementary diagram corresponding to filling factors with even numerator and
odd denominator. Open dots represent fractions p/q with q even, full dots represent fractions with
q odd and p odd, and full squares represent fractions with q odd and p even. This diagram is
related to figure 1 through the symmetry around the p = q axis.

Note that the constraints from �0(2) on the renormalization group flow in a two-parameter
scaling framework have been examined in [7]. The resulting flow diagram (phase diagram)
has been shown to exhibit a specific feature. In fact, consistency with the present experi-
mental observations requires the occurrence for the 0 → 1 transition† of a critical point at
σxy = σxx = 1/2 which appears as a pole of the corresponding β function. This stems from
the existence of a fixed point of �0(2) in its fundamental domain at z0 = (1 + i)/2 (recall that,

† Recall that, as usual, the whole flow diagram is obtained by applying successive �0(2) transformations to the 0 → 1
‘template’ transition.
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in this framework, one has z = σxy + iσxx which parametrizes the conductivity plane). The
situation is different in the �(2) case, as shown recently in [11]: there is no critical point show-
ing up as a pole (at finite distance in the conductivity plane) of the corresponding β function
but consistency with the two-parameter scaling hypothesis seems to require the occurrence in
each allowed transition of a temperature-independent point that might be identified with the
crossing point appearing in the crossover of the observed transitions [11].

4. Conclusion

Let us summarize the results involved in this paper. We have analysed various properties of the
visibility diagrams which are related to the modular symmetries. In particular, we have shown
that the observed structures occurring in the (gate voltage–magnetic field) data, at least in the
integer quantum Hall regime, may well be encoded in one visibility diagram, namely the odd
one. We have also indicated an experimental way to test its possible relevance to the fractional
QHE. Furthermore, we have conjectured that, for a given transition ν = n1 → ν = n2,
n1,2 ∈ Q, the directions of the two coexisting families of straight lines involving the extrema of
the fluctuations (observed in [13] for the transitions 0 → 1, 1 → 2, 2 → 3, 3 → 4) are given by
the directions defined by the corresponding stripes of the odd diagram involved in that transition.
The consistency of the experimental results reported in [13] with the present framework
suggests that this latter (or some of its modular symmetry counterpart) may well encode
features of the dynamics ruling the conductance fluctuations in the quantum Hall regime.
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